Tag Archives: sheet metal nesting

Best Sheet Metal Nesting Process Questions | CAD to CAM | Part 2 of 4

How to Evaluate the Nesting Process

Steps to Evaluate the Nesting Process

In the last blog post we laid out an architecture by which we can critically evaluate a nesting process.  To review, our evaluation process starts with a clear and detailed description of the nesting process, they we ask “why” about each of those defined steps, finally we look for constructive alternatives. Our goals in sum are identifying challenges, means to improve the process, and overall opportunities for efficiencies.

Today we’ll apply our evaluation architecture or system to the processes we’re most familiar with in nesting – collection of part geometry and creation of the part program.

We start at the beginning of the nesting process for most manufacturers, which is creating, identifying, moving, cleaning, and all around getting the geometry from where it is to a place – literally and figuratively – where it can be manufactured.  Read more …

How to Evaluate Your Sheet Metal Nesting Process | Part 1 of 4

How to Evaluate the Nesting Process

Steps to Evaluate the Nesting Process

Most would agree that sheet metal nesting is process.  There are steps; some sequential, some parallel. The activities flow; sometimes well, sometimes not so well. Decisions are made, information is shared, and actions are taken.  The sum of which is a process.

Even though there is significant value to looking critically at the process, most manufacturers rarely review the it unless there is a mandate to begin a Lean Initiative, a major problem, or an alternative sheet metal software solution is under consideration, which is sometimes indicative of a major problem.   Why? Because the day to day management of the process is all consuming. Read more …

Nesting Software | 8 Best Practices to Gain Productivity

Does the nest meet all production requirements?

Does the nest meet all production requirements?

When sheet metal nesting every parameter, machine setting, order sequence, or part layout choice impacts nesting productivity – time & material.

There are countless sheet metal fabrication requirements to be considered when placing parts on a CNC punch, laser, plasma, waterjet or router.  The design, the fabrication requirements, and the order sequence can have a significant impact on the quality of the nest.  How well those requirements are respected when compiling a  nest is at the heart of an effective sheet metal nesting strategy.

Let’s look some of the real world demands that these requirements place on a programmer when nesting, and more significantly, the tools and techiques available improve your numbers today. Read more …

Nesting Efficiency Figures – What Everybody Ought To Know

Measuring Sheet Metal Nesting Material Efficiency

Measuring Sheet Metal Nesting Material Efficiency

Here’s A Quick Way To Understand Sheet Metal Nesting Efficiency Numbers

Why Manufacturers Track Material Efficiency

Manufacturers track their material efficiency for a few reasons. They follow efficiency numbers as a means of keeping an eye on day-to-day costs.  They look at variances in their material efficiency numbers to see if any production changes (part mix, sheet size, trim allotment) have made a difference in efficiency.  Finally, manufacturers frequently look at material efficiency as one basis for evaluating the return on investment when sizing up different sheet metal nesting software or CAM packages.

How to Measure Material Efficiency

We  now turn to the task of measuring or calculating material efficiency.  Read more …

JIT Nesting Software Helps You Respond to Changes in One Machine Cycle

JIT Nesting Software Helps Respond to Change

JIT Nesting Software Helps Respond to Change

We often hear from programmers and engineers  about the hours upon hours they spend librarying parts, creating programs, and optimizing tool paths.  Then they hope nothing changes in the schedule to disrupt their much-labored-over work.  And you know how the story ends.  Something happens – it always does – that throws the schedule into a tailspin, the nests are scrambled, the work starts over, and someone loses their lunch break just to keep the ball rolling.  Meanwhile that equipment is still waiting; waiting impatiently with its metaphorical metronome ticking – loudly.

The solution to this time-and-time-again proven problem is simple.  Just wait until the very last minute – seconds – before the laser, punch or other fabrication equipment has completed the current nest and the operator has unloaded it to create the next nest.  That very next nest would reflect precisely current demand – orders, order quantities, part revisions, and material inventory – and prevent the dreaded last minute scramble to accommodate any and all changes.

It’s possible to do this.  Really.   Allow me to introduce you to “Just-in-Time Nesting.” Read more …

Does Mixing Shop Orders Make You Nervous?

Not Dynamic Nesting of Mixed Orders

Not Dynamic Nesting of Mixed Orders

Does the thought of mixing orders in a nest strike fear into your heart?  Or does it just feel better to keep your items separate, like food on a tray -  no mixing allowed.

This probably isn’t you, but maybe you’ve heard of others, who under penalty of death, will not mix orders when nesting.  It’s true.  We hear about it a lot.

Although I’m having a little fun with it here, some have very real concerns about mixing parts from different orders, jobs, customers on a single or series of nests.  And those concerns are probably based in real-world, nightmarish experiences.

Today, we’ll look at the challenges of mixing orders and some best practices and tools to address them.  Then we’ll consider why mixing orders would be beneficial when done right and with the right tools.  Finally, we’ll ask the questions you may be asking to determine if mixing sheet metal nesting orders is right for you.

Challenges in Mixing Orders When Nesting

Shop Floor Chaos

The biggest concern we hear about mixing orders, jobs, customers Read more …

Remnant Nesting

Irregular Sheet Metal Remnant Nesting

Irregular Sheet Metal Remnant Nesting

Nesting on irregular-shaped remnants can make a significant difference on material yield.  And if you are a manufacturer focused on reducing waste and improving yield, here’s a nesting strategy that could prove very helpful.

Manufacturers often have to create large, non-rectangular parts in small quantities.  These parts can and do fill the majority of the area on a metal sheet; however, they still leave a sizeable amount of usable space inside voids and around the exterior.  This usable space, or remnant, isn’t necessarily rectangular, as many remnants are.  The remnant naturally follows the negative contour of the single large part removed from the sheet.

Irregular-Shaped Remnant Nesting Challenges

When a programmer is faced with an odd-shaped, sheet metal remnant he is challenged with a couple problems Read more …